Converse Variational Stability for Kurzweil Equations associated with Quantum Stochastic Differential Equations
نویسنده
چکیده
Abstract-In analogous to classical ordinary differential equations, we study and establish results on converse variational stability of solution of quantum stochastic differential equations (QSDEs) associated with the Kurzweil equations. The results here generalize analogous results for classical initial value problems. The converse variational stability guaranteed the existence of a Lyapunov function when the solution is variationally stable.
منابع مشابه
On Existence of Solution for Impulsive Perturbed Quantum Stochastic Differential Equations and the Associated Kurzweil Equations
Existence of solution of impulsive Lipschitzian quantum stochastic differential equations (QSDEs) associated with the Kurzweil equations are introduced and studied. This is accomplished within the framework of the Hudson-Parthasarathy formulation of quantum stochastic calculus and the associated Kurzweil equations. Here again, the solutions of a QSDE are functions of bounded variation, that is ...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کامل